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Abstract—The robotic field has been witnessing a progressive
departure from classic robotic systems composed of serial/stiff
links interconnected by simple rigid joints. Novel robotic con-
cepts, e.g., soft robots, often maintain a series-like structure, but
their mechanical modules exhibit complex and unconventional
articulation patterns. Research in efficient recursive formulations
of the dynamic models for subclasses of these systems has been
extremely active in the past decade. Yet, as of today, no single
recursive inverse dynamics algorithm can describe the behavior
of all these systems. This paper addresses this challenge by
proposing a new iterative formulation based on Kane equations.
Its computational complexity is optimal, i.e., linear with the
number of modules. While the proposed formulation is not
claimed to be necessarily more efficient than state-of-the-art
techniques for specific subclasses of robots, we illustrate its
usefulness in the modeling of different complex systems. We
propose two new models of soft robots: (i) a class of pneumatically
actuated soft arms that deform along their cross-sectional area,
and (ii) a piecewise strain model with Gaussian functions.

Note: This paper has supplementary material that can
be accessed at the following link: https://drive.google.com/
drive/folders/13wwUjjX7jm1VkRfYzafbWKtey3qWZ1
a?usp=sharing. The MATLAB code implementing the
proposed algorithms can be found at the following
link: https://github.com/piepustina/Jelly.

I. INTRODUCTION

In recent years, serial robotic systems have undergone a
remarkable transformation, evolving from assemblies of rigid
links and joints to articulated mechanical architectures built
from complex modules. These include serial interconnections
of parallel mechanisms [1], flexible link and joint manipula-
tors [2], robots made of meta-materials [3], [4], continuum
and soft arms [5]–[9], bio-hybrid robots [10]–[12], and rigid
robots manipulating deformable objects [13]. In these systems,
the range of admissible motions does not solely stem from
the joints (if any), as in conventional rigid robots. In fact,
it also arises from compliant and deformable elements like
springs, variable stiffness actuators [14], and flexible and soft
bodies [15]. Consequently, their joints and bodies can be
conceptualized as mechanical modules providing degrees of
freedom (DoF) to the system, as illustrated in Fig. 1. When the
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Figure 1: Selection of mechanical modules, i.e., joints and bodies,
that can be used to assemble the class of robots considered in this
work. Soft, hybrid, and bio-hybrid robots all fall into the class of
robots that can be modeled this way. These bodies include but are not
limited to possibly flexible joints (helical, spherical, elastic, rotational,
and prismatic), beams, generic rigid bodies, and highly deformable
bodies (1D, 2D, and 3D). The only requirement is that the motion
of these components can be described, or approximated, by a finite
set of configuration variables.

relative motion of each module is described, or approximated,
by a finite set of configuration variables, the dynamics follows
the principles of Lagrangian mechanics and is described by
ordinary differential equations of the form

M(q)q̈ + n(q, q̇) = Q(q, q̇,u), (1)

where q ∈ M ⊆ Rn is the configuration vector, with q̇
and q̈ its time derivatives, and u ∈ Rm groups the inputs to
the system. Furthermore, M(q) ∈ Rn×n denotes the inertia
matrix, n(q, q̇) collects Coriolis and centrifugal terms, and
Q(q, q̇,u) models active forces, both conservative and non-
conservative, such as the gravitational force, stress and actuator
inputs.

The forward dynamic problem (FDP) for (1) consists in
computing q̈ from q, q̇ and u. The FDP finds its main
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application in simulation to assess the system behavior across
different conditions. While the FDP has been completely
solved for rigid-bodied systems [16], it remains an open prob-
lem for generic mechanical systems, including among others
systems with deformable bodies. Historically, researchers have
focused on attacking this challenge under small deformations1.
Despite early seminal works from the 80’s [17], the topic
continues nowadays to be an active field of research [18],
[19]. However, these techniques are not applicable nor directly
generalizable to most of the systems we discussed above,
as they often violate the small-deformations hypothesis. An
example of such systems that we will focus our attention on
in the rest of this paper is continuum soft robots [20]–[23].

The dual problem of identifying the active forces responsi-
ble for a given acceleration, i.e., the inverse dynamics problem
(IDP), has received significantly less attention. However, the
IDP plays a pivotal role in various applications that are
crucial for the advancement of autonomous and intelligent
robotic systems, including real-time control [23]–[25], system
identification [26], trajectory generation [27] and optimiza-
tion [28], [29], and mechanical design [30], [31]. In this
context, the computation time becomes essential, especially
when the dynamics has numerous DoF. Furthermore, it is
noteworthy that a procedure for the IDP can also be used to
solve - efficiently although not optimally - the FDP [16].

Numerous studies have explored the computation of the IDP
for flexible link robots using different approaches. These in-
clude the Euler-Lagrange (EL) method [32]–[35], the general-
ized Newton-Euler (NE) equations [36]–[38], the Gibb-Appell
equations [39], and the Kane equations [40]–[42]. Again, all
the mentioned works share three main assumptions: (i) small
deflections, (ii) slender bodies and (iii) the ability to separate
rigid and deformable motion. Unfortunately, such hypotheses
are seldom verified when high deformation occurs, limiting
the application of previous approaches to deformable systems.
Assumptions (i) and (iii) have been partially relaxed, but not
removed, in the context of soft robotics for reduced order
models (RoM) of 1D continua. In particular, [20] proposes an
ID procedure for slender continuum soft robots with piecewise
constant strain (PCS). The method has been extended in [43]
to encompass various kinematic models and rigid bodies. In
addition, [23] removed the PCS hypothesis in place of a modal
Ritz reduction of the strain. Still, these works are limited to
thin bodies (hypothesis (ii)) and assume a linear separation
between material and generalized coordinates, i.e., the strain
ξ ∈ R6 can be expressed as ξ = Φ(s)q, being s and q the
material and generalized coordinates, respectively.

This work aims to take a step further by proposing a method
that has the benefit of eliminating such remaining limiting
assumptions. The only hypothesis is that the configuration
space of the system can be described by a finite-dimensional
model. In our approach, kinematics is treated as input to the
procedure rather than pre-existing information. In particular,
the robot is seen as an assembly of complex modules, its joints
and bodies, whose relative motion is parameterized by an
abstract set of material and configuration variables. This way,

1Usually referred to as flexibility.

it is possible to obtain a unified approach to recursively solve
the IDP for serial multibody mechanical systems, comprising
both rigid and deformable bodies, and remove any assump-
tion regarding their kinematic model. Each body can have
lumped or distributed mass with a three-dimensional domain.
The framework also applies to systems comprising modules
obtained from novel 3D reduced-order models [44], where the
deformations are expressed using function composition. Fig. 1
shows a collection of some modules that the proposed method
can handle. To the best of our knowledge, the IDP has never
been tackled in such a general setting. This is likely due to
the recent proliferation of robots, especially those developed
by the soft robotics community, that cannot be modeled as
assemblies of rigid or flexible bodies.

In analogy with the recursive Newton-Euler approach for
rigid systems, the method has linear complexity in the number
of bodies. It consists of two steps, namely a forward propaga-
tion that initiates velocities and accelerations from the base,
followed by the computation of the generalized active forces in
a backward step. The approach has its foundations in the Kane
equations [45], [46], a choice motivated by their intermediary
nature between the EL and NE equations. In view of their
equivalence with the EL method, the obtained equations of
motion (EoM) can be viewed as a recursive form of the EL
formulation and a generalization to the seminal results of [32],
[47]. In these works, a recursive form of EL equations with
linear complexity has been derived for serial rigid [47] and
flexible link robots [32].

The main contributions of the paper are summarized in the
following.

1) We provide a general definition for the configuration
space of serial modular robotic systems, encompassing
both rigid and deformable bodies.

2) By using the Kane equations, we prove a recursive
formulation of the EoM. Considering the equivalence
between the EL and Kane equations, the method can be
seen as a recursive representation of the EL equations.

3) We derive algorithms solving the IDP for the evaluation
of the generalized active forces and of the actuation
forces. In both cases, the computational complexity grows
linearly with the number of bodies.

To show the generality of the approach, the findings are sup-
ported by simulations results on two new RoM of continuum
soft robots. First, we consider a pneumatically actuated soft
robot and model the radial deformation due to air pressure
change in the actuation chambers. In a second simulation,
taking inspiration from [48], we use Gaussian distributions
to model the strain of a tentacle-like soft arm. Additional
simulations of state-of-the-art multibody mechanical systems
can be found in the supplementary material [49].

A. Notation

We denote vectors and matrices with bold letters. Arguments
of the functions are omitted when clear from the context.
Table I presents the notation adopted in the paper.



Table I: Nomenclature

Symbol Description

Rn Euclidean space of dimension n
Rn×m Space of n×m matrices over R
SE(3) Special Euclidean group of di-

mension 3
so(3) Special orthogonal algebra of di-

mension 3
In ∈ Rn×n Identity matrix of dimension n
0n×m ∈ Rn×m Matrix of zeros
1n ∈ Rn Column vector of ones
Si ∈ Rn Column i of matrix S ∈ Rn×m

Sij ∈ R Element in row i and column j of
S

r̃ ∈ so(3) Skew symmetric matrix defined
by r ∈ R3

A∨ ∈ R3 Euclidean vector associated with
A ∈ so(3)

AT ∈ Rm×n Transpose of A ∈ Rn×m

AB ∈ Rm×p Matrix multiplication of A ∈
Rm×n and B ∈ Rn×p

A⊗B ∈ Rpm×qn Kronecker product of
A ∈ Rm×n and B ∈ Rp×q

vec(A) ∈ Rmn Vectorization of A ∈ Rm×n

a× b = ãb ∈ R3 Cross product of a ∈ R3 and b ∈
R3

∇x f ∈ Rh Gradient of f ∈ R with respect to
x ∈ Rh

∇x f ∈ Rh×l Jacobian transpose of f ∈ Rl with
respect to x ∈ Rh

∇x · Divergence operator in coordi-
nates x ∈ Rh

B. Structure of the paper

The rest of the paper is organized as follows. In Section II,
we establish the configuration space that characterizes the
considered class of systems. Herein, we derive both the
direct kinematics and the first and second-order differential
kinematics. Section III introduces the Kane equations for the
system. A recursive form for these equations is proven in
Section IV, offering immediate utility in assessing generalized
active forces. In Section V, we expand the active forces to
derive an ID recursive procedure for evaluating the actuation
forces only. Section VI presents simulations results, and Sec-
tion VII concludes the paper.

II. KINEMATICS

As a first step towards solving the IDP, in this section we
characterize configuration space of a generic serial modular
mechanical system. We then derive the forward kinematics
and differentiate it with respect to time to obtain the first and
second-order differential kinematics.

Consider a holonomic serial chain with a fixed base of N
bodies Bi, each one connected to its predecessor by a joint
Ji; i ∈ {1, · · · , N}, as shown in Fig. 2. To describe the

kinematics, it is needed to introduce two types of configuration
spaces: one for the joints and another for the bodies. The
former describes the relative motions between adjacent bodies,
as in the case of rigid systems. Conversely, the latter captures
the configurations a body can assume due to its deformability,
if any.

Specifically, we define the configuration space of joint Ji

at time t as follows

CJi
(t) = {(R(t),p(t)) ∈ V̄i(t)},

where V̄i(t) ⊂ SE(3) denotes the oriented volume occupied
by Bi at t, assuming no internal deformations. Note that
this definition encompasses solely the relative motions of the
bodies due to the joints. As for rigid systems, CJi

is described
by a set of generalized coordinates qJi

(t), and its dimension
cannot exceed six, i.e., dim(CJi) = dim(qJi

) = nJi ≤ 6,
with the limit cases CJi

= ∅ and CJi
= SE(3) corresponding

to a fixed and free moving body, respectively.
The above definition does not account for deformations, so

motivating the introduction of the body configuration space.
The configuration space of Bi at time t is

CBi
(t) = {(R(t),p(t)) ∈ (Ṽi(t)− V̄i(t))},

where Ṽi(t) ⊂ SE(3) corresponds to the oriented region of
space occupied by Bi. The set CBi

describes those configura-
tions not represented by CJi

because of deformability. The-
oretically, CBi

requires infinite configuration variables to be
described. Instead, we assume that it can be parameterized by
a minimal set of generalized coordinates qBi

(t) and material
coordinates si ∈ Vi, being Vi the volume in the reference
configuration. This way, the number of coordinates qBi

defines
the dimension of the configuration space, i.e., dim(CBi

) =
dim(qBi

) = nBi
. For example, if Bi is rigid, then qBi

∈ ∅
because, by definition, in a rigid body, no internal deformations
occur. Differently, for a slender continuum modeled under the
piecewise constant curvature (PCC) hypothesis [50], qBi

∈ R2

and its components correspond to the curvatures along the x
and y directions.

Remark 1. We intentionally refrain from any assumption on
how the body deformations can be described. This allows
considering the IDP independently of the kinematic model of
the system.

In the following, we consider qJi
and qBi

as Euclidean
vectors, i.e., qJi

∈ RnJi and qBi
∈ RnBi . Despite this not

being the case in many situations, e.g., for rigid robots with
revolute joints, it does not constitute a problem for this paper
since the focus its on computational methods. We also define
the vectors

qi =

(
qJi

qBi

)
∈ Rni ,

with ni = nBi
+ nJi

, and

q =

 q1
...

qN

 ∈ Rn,

with n =
∑N

i=1 ni, which group the generalized coordinates



of each body and the entire system, respectively. Since CBi
and

CJi are completely specified by qi, the knowledge of qi and
of its time derivatives provides all the information required to
describe the configuration space of the system at any instant
of time, i.e.,

C(t) = (CJ1
(t) + CB1

(t))× · · · × (CJN
(t) + CBN

(t)) .

To compute the kinematics, we attach a reference frame to
each particle 2 of Bi and at the distal end of Ji, labeled as
{SBi(si)} and {SJi}, respectively. We also denote with {Si}
the reference frame of Bi associated to the point sJi+1 ∈ Bi

to which Ji+1 is connected, i.e., {Si} = {SBi
(sJi+1

)}; i =
{1, · · · , N − 1}. For the last body, {SN} is the reference
frame of an arbitrary point of the body. In addition, an inertial
reference frame {S0} is assigned to the base. Recalling that
CJi and CBi have finite dimension the following result holds.

Proposition 1. For all joints Ji and bodies Bi; i ∈
{1, · · · , N}, of the system, there exist

Bi−1TJi

(
qJi

)
=

( Bi−1RJi

(
qJi

) Bi−1tJi

(
qJi

)
01×3 1

)
, (2)

and

JiT Bi

(
qBi

, si

)
=

( JiRBi

(
qBi

, si

) JitBi

(
qBi

, si

)
01×3 1

)
, (3)

where Bi−1TJi

(
qJi

)
and JiT Bi

(
qBi

, si
)

are the homoge-
neous transformation matrices from {SJi

} to {Si−1} and from
{SBi

(si)} to {SJi
}, respectively.

Note that Bi−1TJi

(
qJi

)
remains independent of si since

it describes the relative motion of two bodies induced by
the joint. Conversely, JiT Bi

(
qBi

, si
)

depend on qBi
, which

parameterizes the internal deformations of Bi, and on si which
acts as a label for the points of Bi. In the case of rigid bodies,
JiT Bi

does not depend on qBi
but only on si. The above

matrices are part of the known input data because they come
from the configuration space of Bi and Ji, both known by
assumption. Without loss of generality, it is considered that
the reference configuration is represented by qBi

= 0nBi
so

that JiT Bi

(
0nBi

, si
)

describes the volume occupied by Bi in
the reference configuration, see Fig. 2. In Fig. 3, we also show
examples of the above transformations to clarify this aspect
further. Given (2)–(3), it is possible to compute the relative
transformation between two adjacent bodies, defined as

Bi−1T Bi
(qi, si) =

Bi−1TJi

(
qJi

) JiT Bi

(
qBi

, si
)
. (4)

It is worth observing that the computation of the kinematics
and dynamics requires only the homogeneous transformation
from one body to its predecessor. Indeed, the only effect of
the joints, which can be considered mass-less bodies, is to
impose motion constraints between the bodies of the chain. In
the following, for the sake of simplicity, we write i−1T i =
Bi−1T Bi

and omit the superscript 0 for quantities expressed in
the base frame.

Using (4), one can compute by concatenation the homoge-
neous transformation T i from each point of Bi to the base

2With abuse of terminology, the terms particle and point are used as
synonyms of infinitesimal volume region.

Figure 2: Sketch of a generic mechanical system, conceptualized
as a sequence of bodies Bi and joints Ji. Two types of reference
frames are introduced to describe the motion: one for each point of
Bi and another for Ji, denoted as {SBi(si)} and {SJi}, respectively.
The transformation matrix Bi−1TJi

(
qJi

)
encapsulates the relative

motion, due to the joint, between Bi and its predecessor. To account
for the presence of deformable bodies, a second transformation
JiT Bi

(
qBi

, si

)
describes the position and orientation of each body

infinitesimal volume with respect to Ji.

T i(q1, · · · , qi, si) = T 1(q1, sJ2
)1T 2(q2, sJ3

)

· · · i−1T i(qi, si)

=

(
Ri ti
01×3 1

)
.

(5)

The above equation completely characterizes the kinematics
of the system and can be differentiated with respect to time
to obtain the velocity and acceleration of each particle. Note
also that the only material coordinate affecting T i is si.

A. First- and second-order differential kinematics
We now employ (5) to compute the differential kinematics.

The derivation process parallels the steps undertaken for a rigid
system. However, in this context, additional terms emerge due
to deformations within the body.

Denote with ipi(qi, si) ∈ R3 the position of a point
of Bi relative to Bi−1, expressed in the body frame {Si}.
Remarkably, ipi(qi, si) can be computed from (4) as

ipi(qi, si) =
i−1RT

i (qi, sJi+1
)
(
i−1ti(qi, si)

−i−1ti(qi, sJi+1
)
)
,

Furthermore, let the center of mass of Bi the point having
position in {Si} given by

ipCoMi
(qi) =

1

mi

∫
Vi

ipi(qi, si)ρi(si)dV,



Bi−1TJi (qJi) =

 cos(qJi) − sin(qJi) 0 0
sin(qJi) cos(qJi) 0 0

0 0 1 0
0 0 0 1

 ,

(a) Revolute joint; qJi
∈ [0; 2π)

Bi−1TJi (qJi) =

 1 0 0 qJi

0 1 0 0
0 0 1 0
0 0 0 1

 ,

(b) Prismatic joint; qJi
∈ R

Bi−1TJi = I4,

(c) Fixed joint;
qJi

∈ ∅

JiT Bi (qBi , si) =


cos( si

L0i
qBi) − sin( si

L0i
qBi) 0 L0i

sin( si
L0i

qBi)

qBi

sin( si
L0i

qBi) cos( si
L0i

qBi) 0 L0i

1− cos( si
L0i

qBi)

qBi

0 0 1 0
0 0 0 1

 ,

(d) Planar PCC body without elongation; qBi
∈ R and si ∈ [0, L0i ]

JiT Bi (si) =

 1 0 0 tx(si)
0 1 0 ty(si)
0 0 1 tz(si)
0 0 0 1

 ,

(e) Rigid body; qBi
∈ ∅ and si ∈ Vi

Figure 3: Examples of homogeneous transformations from joints to predecessor bodies (a)–(c) and from bodies to joints (d)–(e).

where mi =
∫
Vi

ρi(si)dV is the body mass and ρi(si) its
mass density. Since ipi and ipCoMi

are elements of R3, there
exists always a unique vector iri ∈ R3 such that the following
holds

ipi =
iri +

ipCoMi
, (6)

where iri satisfies the notable property∫
Vi

iriρidV =

∫
Vi

ipiρidV − ipCoMi

∫
Vi

ρidV = 03×1. (7)

The above identity can be exploited to simplify the EoM,
as usually done for rigid-bodied systems, and it allows to
decompose the motion of each body in terms of its rigid and
deformable parts.

Remark 2. In the flexible link case, iri is typically approxi-
mated following a modal-Ritz reduction approach, i.e.,

iri(qBi
, si) = Φri

(si)qBi
.

In this this work, we never consider such hypothesis. In fact,
we assume a generic and unknown functional dependence of
iri on qBi

and si.

In view of (5) and (6), we can express ipi and ipCoMi
in

the base frame as

pi = pCoMi
+ Ri

iri,

and
pCoMi

= ti + Ri
ipCoMi

.

Time differentiating the above expressions yields the linear
velocity of the center of mass and that of each body, i.e.,

vCoMi = ṗCoMi
= vi + ωi × Ri

ipCoMi
+ Ri

iṗCoMi
, (8)

ṗi = vCoMi
+ ωi × Ri

iri + Ri
iṙi, (9)

where vi = ṫi and ωi =
(
ṘiR

T
i

)∨
are the linear and angular

velocity of {Si} in {S0}, respectively. Observing that ti =
ti−1+Ri−1

i−1ti, it is possible to verify that vi and ωi admit
the following recursive expressions

vi = vi−1 + ωi−1 ×Ri−1
i−1ti +Ri−1

i−1vi−1,i, (10)

ωi = ωi−1 +Ri−1
i−1ωi−1,i, (11)

being i−1vi−1,i = i−1ṫi and i−1ωi−1,i =
(
i−1Ṙi

i−1RT
i

)∨
the relative linear and angular velocity of {Si} as seen
from {Si−1}. Note that the above formulas also appear in
procedures that compute the FD and ID for rigid systems [16].
However, the right-hand side of (8) and (9) contains the
additional terms Ri

iṗCoMi
and Ri

iṙi, which account for the
relative motions of the center of mass and of the body particles
with respect to the reference configuration.

For the following derivations, it is also convenient to define
the velocity vectors in the body frame {Si}, namely

ivi = RT
i vi,

iωi = RT
i ωi,

ivCoMi = RT
i vCoMi .

Making use of (10) and (11), one obtains the following
recursive expressions

ivi =
i−1RT

i (
i−1vi−1 +

i−1ωi−1 × i−1ti +
i−1vi−1,i),

(12)
iωi =

i−1RT
i (

i−1ωi−1 +
i−1ωi−1,i), (13)

ivCoMi =
ivi +

iωi × ipCoMi
+ iṗCoMi

, (14)

with 0v0 = 03×1 [m s−1] and 0ω0 = 03×1 [rad s−1].

Since the formulation of the dynamics requires the acceler-
ations, we time differentiate also (8), (10) and (11), obtaining

aCoMi =
dvCoMi

dt
= ai + ω̇i × Ri

ipCoMi
+ ωi

×
(
ωi × Ri

ipCoMi
+ Ri

iṗCoMi

)
+ ωi × Ri

iṗCoMi
+ Ri

ip̈CoMi
,

ai =
dvi

dt
= ai−1 + ω̇i−1 ×Ri−1

i−1ti + ωi−1

×
(
ωi−1 ×Ri−1

i−1ti +Ri−1
i−1vi−1,i

)
+ ωi−1 ×Ri−1

i−1vi−1,i +Ri−1
i−1v̇i−1,i,

and

ω̇i =
dωi

dt
= ω̇i−1 + ωi−1 ×Ri−1

i−1ωi−1,i

+Ri−1
i−1ω̇i−1,i.

From (9) and the above equations, it follows immediately that

p̈i = aCoMi
+ ω̇i × Ri

iri + ωi × (ωi × Ri
iri)

+ 2ωi × Ri
iṙi + Ri

ir̈i.
(15)



Rotating the above vectors again in the body frame, i.e.,
iai = RT

i vi,
iω̇i = RT

i ωi,
iaCoMi

= RT
i vCoMi

,

some computations lead to
iai =

i−1RT
i

[
i−1ai−1 +

i−1ω̇i−1 × i−1ti

+i−1ωi−1 ×
(
i−1ωi−1 × i−1ti +

i−1vi−1,i

)
+i−1ωi−1 × i−1vi−1,i +

i−1v̇i−1,i

]
,

(16)

iω̇i =
i−1RT

i

(
i−1ω̇i−1 +

i−1ωi−1 × i−1ωi−1,i

+i−1ω̇i−1,i

)
,

(17)

iaCoMi
= iai +

iω̇i × ipCoMi

+ iωi ×
(
iωi × ipCoMi

+ iṗCoMi

)
+ iωi × iṗCoMi

+ ip̈CoMi
,

(18)

and
ip̈i =

iaCoMi
+ iω̇i × iri +

iωi × (iωi × iri)

+ 2iωi × iṙi + Ri
ir̈i.

(19)

The following result is an immediate consequence of the above
equations.

Lemma 1. Given q, q̇ and q̈, the first- and second-order
differential kinematics expressed in the body frame, i.e.,
ivi,

iωi,
ivCoMi ,

iai,
iω̇i and aCoMi , can be computed re-

cursively forward in space from B1 to BN with 0v0 =
03×1 [m s−1], 0ω0 = 03×1 [rad s−1], 0a0 = 03×1 [m s−2]
and 0ω̇0 = 03×1 [rad s−2]. In addition, the computational
complexity for such evaluation is O(N).

Proof. The result follows by observing the recursive structure
of (12)–(14) and (16)–(18) and that their right-hand sides
depend only on qj , q̇j and q̈j ; j ∈ {1, · · · , i}.

Furthermore, it is worth anticipating that, in analogy with
the rigid body case, the computation of the differential kine-
matics will constitute the first step of the ID procedure.

III. KANE EQUATIONS

In this section, we briefly derive the Kane equations for
a modular mechanical system, as introduced in Sec. II. The
derivation entails a two-step procedure. In particular, starting
from the weak formulation of the dynamics, the equations are
projected in the configuration space defined by q.

According to the weak form of the EoM [51], for every
body Bi of the system, one has∫

Vi

δpT
i

(
f inti + f exti −

d (ṗiρi)

dt

)
dV = 0. (20)

Here, f inti is the vector modeling internal forces per unit
volume, such as the mechanical stress and actuation forces
(when the system is internally actuated). The vector f exti
represents the resultant external force per unit volume, in-
cluding for example gravity. Furthermore, d(ṗiρi)

dt is the time
derivative of the particle linear momentum per unit volume.
According to the Kane method, in the computations, it suf-
fices to consider among f inti and f exti only the forces that
perform work on the body particles, i.e., the forces for which∫
Vi

δpT
i f intidV ̸= 0 and

∫
Vi

δpT
i f extidV ̸= 0. For example,

the reaction forces between two consecutive bodies are non-
working. As a result, they can be neglected in the balance
equation.

Recalling that the time dependence of pi is implicit and
solely through q, it follows that δpi = (∇q pi)

T
δq. Substi-

tuting this into the above equation and rearranging the terms
yields ∫

Vi

δqT∇q pi

(
df i −

d (ṗiρi)

dt

)
= 0,

where we have defined for compactness the net force df i =(
f inti + f exti

)
dV . Since the system is holonomic, each

generalized coordinate can experience a virtual displacement
independently of the others, which implies∫

Vi

∇q pi

(
df i −

d (ṗiρi)

dt
dV

)
= 0n.

Summing the contributions for each body gives the reduced-
order EoM

N∑
i=1

∫
Vi

∇q pi

(
df i −

d (ṗiρi)

dt
dV

)
= 0n,

and the Kane equations for the system

Q =

N∑
i=1

∫
Vi

∇q̇ ṗidf i, (21)

Q∗ = −
N∑
i=1

∫
Vi

∇q̇ ṗi

d (ṗiρi)

dt
dV, (22)

Q+Q∗ = 0n, (23)

where the identity ∇q pi = ∇q̇ ṗi has been used. The terms
Q and Q∗ are called the generalized active and inertia force,
respectively. In the following, for the sake of simplicity, we
restrict the analysis to systems for which the variation of the
mass density is negligible, i.e., ρ̇i = 0, i ∈ {1, · · · , N}. This
way, we can simplify the second term in the integrand of (22)
as

d (ṗiρi)

dt
dV = p̈iρidV = p̈idmi, (24)

where we defined the infinitesimal mass dmi = ρidV .
From (7) and the Reynolds transport theorem, this also implies∫

Vi

iṙiρidV =
d

dt

(∫
Vi

iriρidV

)
= 03×1, (25)

and ∫
Vi

ir̈iρidV =
d

dt

(∫
Vi

iṙiρidV

)
= 03×1. (26)

It is worth underlying that the above hypothesis can be relaxed
at the price of longer expressions in the recursive formulation.

Proposition 2. Equations (21)–(24) are equivalent to (1), i.e.,

−Q∗(q, q̇, q̈) = M(q)q̈ + n(q, q̇). (27)

Proof. See Appendix A

In the following, we establish a recursive expression of (21)-
(23), which allows an efficient computation of Q and Q∗. For



the sake of derivation, it proves advantageous to expand Q and
Q∗ into their components of the single bodies. This involves
considering the EoM (21)–(23) in the equivalent form

Qj =

N∑
i=1

∫
Vi

∇q̇j
ṗidf i, (28)

Q∗
j = −

N∑
i=1

∫
Vi

∇q̇j
ṗip̈idmi, (29)

Qj +Q∗
j = 0nj

, (30)

with j ∈ {1, · · · , N}, where we expanded Q and Q∗ into
their components associated to each body Bj .

IV. RECURSIVE FORMULATION OF THE EQUATIONS OF
MOTION

This section presents the main result of the paper, i.e., a
recursive formulation of (28)–(30), which yields a simple and
general procedure for the solution of the IDP. We provide a
pseudo-code for implementing the algorithm, encompassing
all necessary terms. Remarkably, the treatment remains inde-
pendent on the assumption that ρ̇i = 0.

To this end, rewrite the left-hand side of (30) explicitly for
qj as

Qj +Q∗
j =

N∑
i=1

∫
Vi

∇q̇j
ṗi (df i − p̈idmi) .

Note that, for i < j, ∇q̇j
ṗi = 0nj×3 because pi depends

only on q1, . . . , qi−1 and qi. Consequently, the lower bound
of the summation can be replaced with the index associated
with Bj , leading to a more concise form

Qj +Q∗
j =

N∑
i=j

∫
Vi

∇q̇j
ṗi (df i − p̈idmi) .

By leveraging (9), the previous equation can be rewritten as

Qj +Q∗
j =

N∑
i=j

∇q̇j
vCoMi

∫
Vi

df i − p̈idmi

+∇q̇j
ωi

∫
Vi

(
Ri

iri
)
× (df i − p̈idmi)

+

∫
Vi

∇q̇j

iṙiR
T
i (df i − p̈idmi) .

Given that iri depends solely on the configuration variables of
the corresponding body Bi, it holds ∇q̇j

iṙi = 0nj×3; i ̸= j,
which simplifies the above expression to

Qj +Q∗
j =

∫
Vj

∇q̇j

j ṙjR
T
j

(
df j − p̈jdmj

)
+

N∑
i=j

∇q̇j
vCoMi

∫
Vi

df i − p̈idmi

+∇q̇j
ωi

∫
Vi

dτ i −
(
Ri

iri
)
× p̈idmi,

(31)

being dτ i =
(
Ri

iri
)
× df i the net torque acting on each

infinitesimal volume. It should be noted that the right-hand

side of the above equation contains three terms. The first
models effects local to the body. On the other hand, the other
two terms account for the balance of forces and momenta with
respect to the center of mass. Furthermore, the summation
considers the forces exchanged between Bj and the other
bodies in the chain.

By exploiting the invariance of the scalar product for
rotations, it is possible to express (31) in the body frame {Si}
as

Qj +Q∗
j =

∫
Vj

∇q̇j

j ṙj
(
djf j − j p̈jdmj

)
+

N∑
i=j

∇q̇j

ivCoMi

∫
Vi

dif i − ip̈idmi

+∇q̇j

iωi

∫
Vi

diτ i − iri × ip̈idmi,

(32)

where dif i = RT
i df i and diτ i = RT

i dτ i denote the force
and torque in {Si}, respectively. For the sake of readability,
we introduce the following definitions

iF i =

∫
Vi

dif i,
iF∗

i = −
∫
Vi

ip̈idmi,
iT i =

∫
Vi

diτ i,

(33)
and

iT ∗
i = −

∫
Vi

iri × ip̈idmi. (34)

Henceforth, the terms active force and torque of Bi denote
iF i and iT i, respectively. Similarly, iF∗

i and iT ∗
i represent

its inertial force and torque. Note that the dimension of all the
above vectors is equal to three, independently of the number of
generalized coordinates of the body. Substituting (33) into (32)
leads to

Qj +Q∗
j =

∫
Vj

∇q̇j

j ṙj
(
jF j +

jF∗
j

)
+

N∑
i=j

∇q̇j

ivCoMi

(
iF i +

iF∗
i

)
+∇q̇j

iωi

(
iT i +

iT ∗
i

)
.

(35)

The previous expression can be further simplified recall-
ing (14), which implies that, for i = j,

∇q̇j

ivCoMi
= ∇q̇j

ivi +∇q̇j

iωi
ip̃CoMi

+∇q̇j

iṗCoMi
,

and, for i > j,

∇q̇j

ivCoMi = ∇q̇j

ivi +∇q̇j

iωi
ip̃CoMi

.

Indeed, the position of the center of mass in the body frame,
and consequently also its time derivative, depends only on the
configuration variables of the body. The substitution of the
above identities into (35) gives

Qj +Q∗
j = jπj +

jπ∗
j +Mj

(
iF i,

iF∗
i ,

iT i,
iT ∗

i

)
, (36)



with i ∈ {j, · · · , N},

jπj =

∫
Vj

∇q̇j

(
j ṙj +

j ṗCoMj

)
djf j

=

∫
Vj

∇q̇j

j ṗjd
jf j ,

(37)

jπ∗
j = −

∫
Vj

∇q̇j

(
j ṙj +

j ṗCoMj

)
j p̈jdmj

= −
∫
Vj

∇q̇j

j ṗj
j p̈jdmj ,

(38)

and

Mj =

N∑
i=j

∇q̇j

ivi

(
iF i +

iF∗
i

)
+∇q̇j

iωi(
iT i +

iT ∗
i +

ipCoMi
×
(
iF i +

iF∗
i

))
.

(39)

Indeed, jπj and jπ∗
j contain terms that are only local to

the body. In contrast, Mj involves the forces and torques
of Bj and all subsequent bodies. Consequently, only Mj

necessitates a recursive expression. The following theorem
formalizes the main contribution of this work, namely that
Mj can computed recursively.

Theorem 1. Given q, q̇ and q̈, the operator Mj ; j ∈
{N, · · · , 1}, admits the following backward recursive expres-
sion

Mj = ∇q̇j

jvj

(
jF j +

jF ∗
j

)
+∇q̇j

jωj

(
jT j +

jT ∗
j

)
,

(40)

where
jF j +

jF ∗
j = jF j +

jF∗
j

+ jRj+1

(
j+1F j+1 +

j+1F ∗
j+1

)
,

jT j +
jT ∗

j = jT j +
jT ∗

j +
jpCoMj

×
(
jF j +

jF∗
j

)
+ jRj+1

(
j+1T j+1 +

j+1T ∗
j+1

)
+ jtj+1 × jRj+1

(
j+1F j+1 +

j+1F ∗
j+1

)
,

(41)

with N+1FN+1 = N+1F ∗
N+1 = 03×1 [N] and N+1TN+1 =

N+1T ∗
N+1 = 03×1 [Nm].

Proof. See Appendix B.

In (41), the terms jF j and jT j account for the total effects
of the linear and angular active forces on Bi due to Bi itself
and all its successor bodies. Similarly, jF ∗

j and jT ∗
j are the

corresponding inertial forces. Note that ∇q̇j

jvj and ∇q̇j

jωj

project the system dynamics in the direction of qj and can
be computed from the kinematic model because they depend
only on quantities of the body. Indeed, (12) and (13) imply

∇q̇j

jvj = ∇q̇j

j−1vj−1,j
j−1Rj(qj), (42)

and

∇q̇j

jωj = ∇q̇j

j−1ωj−1,j
j−1Rj(qj). (43)

The derivation of the above recursive equations does not rely
on the hypothesis that ρ̇i = 0. Indeed, the latter affects only

the expression of iF∗
i and iT ∗

i , which depend solely on the
body kinematics and mass distribution.

Remark 3. Equations (36)–(43) represent a recursive form
of the dynamics, parameterized by jπj ,

jπ∗
j ,

iF i,
iF∗

i ,
iT i

and iT ∗
i . These equations hold for any serial robotic system

described by a finite number of configuration variables. Fur-
thermore, in view of Proposition 2, (36)–(43) can be seen as
a recursive form of the first.

Property 1. The operator Mj is linear in all its arguments.

Proof. The property follows from (39) since the matrix and
cross products are linear operators.

Property (1) allows isolating the contributions of the gen-
eralized active forces. This also implies that Qj and Q∗

j

can be computed by nullifying the inertial and active terms,
respectively, i.e.,

Qj =
jπj +Mj(

iF i,03×1,
iT i,03×1) = −Q∗

j , (44)

and

Q∗
j = jπ∗

j +Mj(03×1,
iF∗

i ,03×1,
iT ∗

i ) = −Qj , (45)

where the last identity in (44) and (45) arises from Qj+Q∗
j =

0nj
. Assuming the knowledge of iF∗

i , iT ∗
i and jπ∗

j , the last
equation offers a means of calculating Qj . Thus, the last step
for solving the IDP consists of computing the inertial terms
of the bodies, which we address below.

A. Evaluation of the inertial force and torque
We now evaluate the inertial terms appearing in Algo-

rithm 1, namely iF∗
i , iT ∗

i and jπ∗
j .

Using (15), iF∗
i takes the form

iF∗
i = −iaCoMimi, (46)

where (7) and (25)– (26) have been employed.
A similar computation for iT ∗

i leads to

iT ∗
i = −

∫
Vi

d

dt

(
iri × RT

i

d

dt

(
Ri

iri
))

dmi. (47)

Note that the integrand of the right-hand side represents the
time derivative of the particles angular momentum about the
center of mass. Now, using the identity

d

dt

(
Ri

iri
)
= ωi × Ri

iri + Ri
iṙi,

after some computations, (47) becomes

iT ∗
i = −iIi

iω̇i − iωi × iIi
iωi − iJ iωi − iωi

×
∫
Vi

iri × iṙidmi −
∫
Vi

iri × ir̈idmi,
(48)

where we defined the body inertia

iIi =

∫
Vi

ir̃Ti
ir̃idmi,

and its time derivative

iJ i =
diIi

dt
=

∫
Vi

i˜̇rTi ir̃i +
ir̃Ti

i˜̇ridmi.



Indeed, recall that, when the body is deformable, iri is a
function of time. In addition, the first two terms on the right-
hand side of (48) model the rigid motion, while the remaining
terms arise because of deformability.

Now consider iπ∗
i . By substituting (15) into (38) and

performing some computations, one obtains

iπ∗
i = −∇q̇i

(∫
Vi

iri × iṙidmi

)
iω̇i

+
1

2

(
Ini

⊗
(
iωT

i

(
iωT

i ⊗ I3

)))
vec
((

∇qi
vec(iJ i)

)T)
− 2

(∫
Vi

iṙi ×∇q̇i

iṙidmi

)
iωi

−
∫
Vi

∇q̇i

iṙi
ir̈idmi +∇q̇i

iṗCoMi

iF∗
i .

(49)

Remark 4. All the inertial terms are functions of qi, q̇i and
q̈i and their functional expression can be computed offline
once the kinematic model of the body and its mass density are
known. When a closed-form expression for the above integrals
is not available, numerical integration techniques, such as
the Gaussian quadrature rule, must be used. For an in depth
discussion of these methodologies see [52].

Combining (45) with Lemma 1, Theorem 1 and the expres-
sions for iF∗

i , iT ∗
i and jπ∗

j , it follows that Q can be computed
using Algorithm 1, denoted in the following as Generalized
ID (GID). In analogy with the rigid-bodied case [16], the
procedure entails a forward and a backward step. In the former,
q and its time derivatives are used to compute velocities and
accelerations, allowing the evaluation of iF∗

i , iT ∗
i and jπ∗

j .
Then, the backward step determines the generalized inertial
force by projecting the inertial terms in the configuration
space. This is accomplished using (45) and its recursive
formulation given by (40)–(41). The computational complexity
grows linearly with the number of bodies as formalized in the
following.

Corollary 1. The computational complexity of Algorithm 1 is
O(N).

Proof. From Lemma 1, (46) and (48)–(49), the cost of the
forward step in Algorithm 1 is O(N). Similarly, Theorem 1
implies that the computational complexity of the backward
step is O(N).

It is also worth observing that, in the case where the
system contains only rigid bodies, the ID for rigid robots are
immediately recovered.

V. ACTUATION INVERSE DYNAMICS

Usually, when solving the IDP one is interested in evaluat-
ing the contribute of the actuators only, which we denote as
the Actuation ID (AID), rather than of all the active forces. We
address such problem in this section by separating the effect
of the actuators from those of other active forces. If no other
forces act on the system, then the AID and GID coincide,
eliminating the need for further steps because no other forces

Algorithm 1 Generalized Inverse Dynamics: Q=GID(q, q̇, q̈)

Require: q, q̇, q̈
for i = 1 → NB do ▷ Forward step

Compute iωi, iaCoMi
and iω̇i

Compute iF∗
i , iT ∗

i and iπ∗
i

end for
for i = NB → 1 do ▷ Backward step

Compute Qj as given in (45) by using (37)–(41)
end for

must be considered. However, this situation seldom occurs in
practice, e.g., when the robot moves in a gravitational field,
and Qj needs to be expanded into its individual components.

Being elements of vector spaces, dif i and diτ i can be
decomposed in the distinct forces and torques acting on each
particle. This paper considers two additional types of gener-
alized forces that often manifest in the robotic systems we
are interested in, namely gravitational and internal interaction
forces. Thus, the active force and torque take the form

dif i = difa
i + difg

i + difs
i , (50)

and
diτ i = diτ a

i + diτ s
i , (51)

where difa
i , difg

i and difs
i denote the force due to actuation,

gravity and particles interaction, respectively. The vectors
diτ a

i and diτ s
i represent their rotational counterparts. Hence,

the generalized active force can be expressed as follows

Qj(q, q̇,u) = Qg
j (q) +Qa

j (q, q̇,u) +Qs
j(q, q̇), (52)

where each term on the right-hand side of the equation is
obtained by replacing df i and dτ i with the corresponding
force and torque as in (50) and (51). Note that, in view
of their definition, also jπj , iF i and iT i admit analogous
decomposition.

Remarkably, we can immediately compute the AID without
affecting the computational complexity. In particular, replac-
ing (52) into (30) gives

Qa
j = −Qg

j −Qs
j −Q∗

j ,

or, equivalently by using (44)–(45) and the linearity of Mj

(Property 1),

Qa
j = −jπ∗

j − jπs
j − jπg

j

−Mj(
iFs

i +
iFg

i ,
iF∗

i ,
iT s

i ,
iT ∗

i ).
(53)

Note that the effect of gravity appears only as a linear
force. The pseudo-code for the computation of Qa

j is given
in Algorithm 2, which is similar to that of the GID. The
difference lies in accounting for the terms that correspond to
external forces which differ from those generated by actuation.

We conclude this section by computing Qg
j and Qs

j , thereby
providing the complete expression of the AID.



Algorithm 2 Actuation Inverse Dynamics: Qa = AID(q, q̇, q̈)

Require: q, q̇, q̈
for i = 1 → NB do ▷ Forward step

Compute iωi, iaCoMi
and iω̇i

Compute iF∗
i , iT ∗

i , iπ∗
i , iFg

i , iFs
i , iT s

i and iπs
i

end for
for i = NB → 1 do ▷ Backward step

Compute Qa
j as given in (53) by using (40)–(41)

end for

A. Gravitational force

The gravitational active force performing work on Bi is

iFg
i =

∫
Vi

RT
i gdmi = RT

i gmi =
igmi, (54)

being g ∈ R3 the gravity vector in {S0} and ig its represen-
tation in body coordinates. Similarly, we have

iπg
i = ∇q̇i

iṗCoMi

igmi. (55)

The computation of iFg
i can be performed sequentially from

the first body to the last. By comparing (54) with (46) and (55)
with (49), it is possible to see that the effect of gravity can be
incorporated into the calculations by setting the acceleration
of the base to 0a0 = −g.

B. Interaction force

The derivation of the generalized interaction forces requires
necessarily further hypotheses. Being undoubtedly the most
used for control purposes, we assume a linear visco-elastic
stress-strain relationship, so that Qs

j = Qe
j +Qd

j , and denote
the corresponding forces (torques) as dife

i (diτ e
i ) and difd

i

(diτ d
i ), respectively. Furthermore, let

iEi = JT
si
(iri)Jsi

(iri)− JT
si
(ir∗i )Jsi

(ir∗i ),

the Green-Lagrange strain tensor in the body coordinates,
where ir∗i represents iri in the reference configuration. Ac-
cording to the Hooke law, one has

dife
i = ∇si

·
(
2µi

iEi + λitr
(
iEi

)
I3

)
dV,

and
diτ e

i =
iri × dife

i ,

where λi =
Ei

2(1 + 2νi)
and µi =

Eiνi
(1 + νi)(1− 2νi)

are the

Lame constants of Bi, with Ei and νi the material Young
modulus and Poisson ratio, respectively. Note that the diver-
gence operator projects the internal stress into the dynamic
equations [51] . Similarly, considering a Kelvin–Voigt model
for the viscous forces leads to

difd
i = ηi∇si · iĖidV,

and
diτ d

i = iri × difd
i ,

being ηi the material viscosity. Finally, iFs
i , iT s

i and iπs
i can

be obtained by proper integration over the body as detailed
in (33)– (34) and (37).

Remark 5. More accurate models for the interaction forces
can be considered. Indeed, from Property 1, a different model
of these forces will affect only the computation of Qs

j .

VI. SIMULATIONS

The main motivation of this work is to obtain a unified
procedure to evaluate the GID and AID of serial modular
mechanical systems for control purposes. In principle, this
requires an experimental validation, which is out of scope
given the theoretical nature of this paper and will be considered
in future work. Nonetheless, we believe that a validation is
helpful to show the generality of our approach. In this section,
despite not being its main application, we exploit the AID
algorithm to simulate new RoM for continuum soft robots.

Note: Additional simulation results on state of the art
models can be found in the paper supplementary material
at the following link: https://drive.google.com/drive/folders/
13wwUjjX7jm1VkRfYzafbWKtey3qWZ1 a?usp=sharing.

In particular, Algorithm 2 is used to solve the FDP through
the inertia-based algorithm [16], which we briefly summarize
in the following. At each time step, the FDP requires solving
the following linear system

M(q)q̈ = −n(q, q̇) +Q(q, q̇,u). (56)

Exploiting the linearity of the dynamics in the acceleration,
the i-th column of M(q) can be computed calling the AID
procedure as follows

M i(q) = AID(q,0n, (In)i).

Since the AID takes O(N) computations, the cost to evaluate
the mass matrix is O(N2). Similarly, the vectors appearing
in the right-hand side of (56) can be computed by setting the
acceleration to zero, i.e.,

−n(q, q̇) +Q(q, q̇,u) = GID(q, q̇,0n),

with a O(N) computational cost. Observing that (56) requires
solving a linear system of equations, the worst-case complexity
for the computation of the FD with this approach is O(N3).
Despite not being optimal, the possibility to simulate the
dynamics with the ID comes for free without any further effort.
In addition, the computation of M(q) can be parallelized, so
improving the speed of the algorithm.

It is worth remarking that the same ID algorithm is used in
all the following simulations. Every simulation is implemented
by providing a different robot model to the procedure.

A. Simulation 1: PCC with variable radius

Consider a planar soft robot actuated with three pairs of
antagonistic pneumatic chambers. Our method allows to easily
model the effect of the chambers on the dynamics by intro-
ducing additional DoF for the radius change. To the best of
our knowledge, this is the first time that such class of models
is presented and simulated, and thus constitutes an additional
contribution of this work. The kinematics is modeled by a
combination of strain and radius configuration variables. The
strain configuration encodes the pose of the robot backbone,
while the radius variables model the shape alterations along the

https://drive.google.com/drive/folders/13wwUjjX7jm1VkRfYzafbWKtey3qWZ1_a?usp=sharing
https://drive.google.com/drive/folders/13wwUjjX7jm1VkRfYzafbWKtey3qWZ1_a?usp=sharing


robot section. The continuum is discretized into three bodies
with cylindrical shape in the stress free configuration, having
each rest length L0i = 0.2 [m], radius R0i = 0.02 [m] and
mass density ρi = 1062 [kgm−3]; i = 1, 2. The material
visco-elastic parameters are Ei = 1.06[MPa], νi = 0.5 and
ηi = 0.1 [s]. The base is rotated so that in the straight
configuration the robot is aligned with the gravitational field
and points downwards. Each pneumatic chamber has a uniform
distance dc,i = 0.004 [m] from the body walls.

Each body Bi has in total four DoF. The first two model
the curvature and elongation strains under the PCC hypothesis,
i.e.,(

κi(qi)
δLi(qi)

)
=

1

L0i

(
1 0 0 0
0 1 0 0

)
qi +

(
0
1

)
.

The remaining two configuration variables describe the change
in radius Ri, namely

Ri(si,2, qi) = R0i + δRi(si,1, si,2, qi),

where

δRi =


(

0 0 b(si,1, si,2) 0
)
qi,

si,1 ∈ [0, L0,i],
si,2 ∈ [0, π);(

0 0 0 b(si,1, si,2 − π)
)
qi,

si,1 ∈ [0, L0,i],
si,2 ∈ [π, 2π);(

0 0 0 0
)
, otherwise.

,

models the radius change from R0i . The variable si,2 is used to
locate for each cross section the pneumatic chamber. To model
the functional dependence of δRi on the material coordinates
si,1 and si,2 we use the multivariate bump function

b(si,1, si,2) = e

−
L0i

L2
0i

4 − (si,1 −
L0i

2 )2 e

−
1

π2

4 − (si,2 − π
2 )

2
.

This choice is motivated by empirical observation of pneu-
matically actuated soft robots, whose chamber deformation is
usually larger at the middle of body.

The actuation generalized force Qa
i (qi,ui) of Bi is modeled

using the principle of virtual works leading to

Qa
i (qi,ui) = ∇qi

V i(qi)ui, (57)

where the vector V i(qi) = (Vi,1(qi) Vi,2(qi))
T collects

the volume of the two pneumatic chambers in the current
configuration and ui = (ui,1 ui,2)

T is the difference in
chamber pressure with respect to the atmospheric pressure.
The robot starts at rest from the stress free configuration
q0 = 012 and the dynamics is excited with a constant input
equal to

u =
(
2 0 0 2 1 0.4

)
[MPa].

The volume integrals appearing in the ID algorithms and (57)
are approximated using a Gaussian quadrature rule in spherical
coordinates. Fig. 4 reports the time evolution of the configu-
ration variables, divided into strain and radius variables, and
a stroboscopic plot of the robot motion in its workspace.
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Figure 4: Simulation 1: PCC with variable radius. Time evolution of
the strain (a) and radius (b) configuration variables, and stroboscopic
plot (c) for a planar soft arm with variable radius of three bodies and
six pressure chambers. In (c), the initial and final configurations are
depicted in blue, while the transient motion in light gray.

B. Simulation 2: PGC in free evolution

Consider a tentacle-like soft robotic arm of two bodies with
conical shape. The first body has base and tip radius equal
to Rbase1 = 0.01 [m] and Rtip1

= 0.005 [m], respectively,
while the second Rbase2 = 0.005 [m] and Rtip2

= 0.002 [m].
The rest length and mass density are L0i = 0.2 [m] and



ρi = 1070 [kg/m3], respectively. The elastic parameters are
Ei = 0.666 [GPa] and νi = 0.4, while the material viscosity
is ηi = 0.01 [s]; i = 1, 2. The kinematics is computed using the
Geometric Variable Strain approach of [53]. Inspired by [48],
we model the strain using a Piecewise Gaussian Curvature
(PGC) basis with elongation, defined as follows κx,i

κy,i

δLi

 = Φi(si)qi +

 0
0
1

 ,

where

Φi(si) =
1

L0i

 0 0 −1 −e−(si−L0i
/2)2 0

1 e−(si−L0i
/2)2 0 0 0

0 0 0 0 1

 ,

si ∈ [0, L0i ] and qi ∈ R5. The robot starts at rest from the
initial configuration

q0 =
(
0.3 1 0 1 0.1 −1 0 0.1 2 0

)T
,

and the base is rotated so that in the stress-free configuration
the arm is aligned with the gravitational field with the tip
pointing upwards. The results of the simulation are shown
in Fig. 5. After a transient of approximately 5 [s], the arm
reaches a steady-state position consistent with the direction of
the gravitational force.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a recursive method for computing the
inverse dynamics of serial mechanical systems assembled from
complex modules. The procedure is general and independent
of the body domain and type, meaning it can be used for a
wide range of robots, including rigid and deformable bodies.

Considering an abstract kinematic model of each system
module, the equations of motion are derived using the weak
form of the dynamics and the Kane method. It is then proven
that such equations admit a recursive expression, which allows
for an efficient implementation of the inverse dynamics. The
procedure has linear complexity in the number of bodies and
is thus optimal. The versatility of the method is shown by
simulating two novel reduced order models of continuum soft
robots.

Future work will focus on the experimental validation of
the method for synthesizing model-based controllers. We also
aim to investigate how the algorithm must be modified to
handle non-holonomic constraints. A further research direction
is to use a similar approach to solve efficiently the forward
dynamics problem.

APPENDIX

A. Proof of Proposition 2

To show the result it suffices to prove the equivalence
between the Kane and Euler-Lagrange equations of a generic
configuration variable qk. To this end, consider the kinetic
energy of the system

K =

N∑
i=1

Ki =

N∑
i=1

∫
Vi

1

2
ṗT
i ṗidmi, (58)
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Figure 5: Simulation 2: PGC in free evolution. Time evolution of the
configuration variables (a) and stroboscopic plot (b) of a continuum
soft robot modeled with a Gaussian model of the strain. In (b), the
initial and final configurations are depicted in blue, while intermediate
configurations in light gray.

where Ki denotes the kinetic energy of Bi. By the Reynolds
transport theorem, it follows that

d

dt

(∫
Vi

∇qk p
T
i ṗidmi

)
=

∫
Vi

d

dt

(
∇qk p

T
i ṗidmi

)
=

∫
Vi

d

dt

(
∇qk p

T
i ṗi

)
dmi,

(59)

where in the last equality ρ̇i = 0 has been used. Expanding
the derivative and rearranging the terms leads to∫

Vi

∇qk p
T
i p̈idmi =

d

dt

(∫
Vi

∇qk p
T
i ṗidmi

)
−
∫
Vi

d

dt

(
∇qk p

T
i

)
ṗidmi

(60)

Now, note that∫
Vi

∇qk p
T
i ṗidmi = ∇q̇k

∫
Vi

1

2
ṗT
i ṗidmi = ∇q̇k Ki,



and ∫
Vi

∇qk ṗ
T
i ṗidmi = ∇qk

∫
Vi

1

2
ṗT
i ṗidmi = ∇qk Ki,

which substituted in (60) yields∫
Vi

∇qk p
T
i p̈idmi =

d

dt
(∇q̇k Ki)−∇qk Ki.

By exploiting the linearity of the differentiation, one has
N∑
i=1

∫
Vi

∇qk p
T
i p̈idmi =

N∑
i=1

d

dt
(∇q̇k Ki)−∇qk Ki

=
d

dt

(
∇q̇k

N∑
i=1

Ki

)
−∇qk

N∑
i=1

Ki

=
d

dt
(∇q̇k K)−∇qk K

Replacing the above equation in (23) finally gives

Qk =
d

dt
(∇q̇k K)−∇qk K.

The result follows by recalling that Qk = −Q∗
k and observing

that the right-hand side of the above equations is the k-th row
of (1).

B. Proof of Theorem 1

In the following, we prove that (40)–(41) is a recursive
expression of Mj as defined in (39). First, note that, for all
i ≥ j, the following identities hold

∇q̇j

i+1vi+1 = ∇q̇j

ivi
iRi+1

+∇q̇j

iωi
iti+1 × iRi+1,

(61)

∇q̇j

i+1ωi+1 = ∇q̇j

iωi
iRi+1. (62)

The result follows by iteratively exploiting the above equa-
tions. In particular, consider the right-hand side of (40),
repeated below for the ease of readability

∇q̇j

jvj

(
jF j +

jF ∗
j

)
+∇q̇j

jωj

(
jT j +

jT ∗
j

)
. (63)

Replacing (41) into the previous equation gives

∇q̇j

jvj

(
jF j +

jF ∗
j

)
+∇q̇j

jωj

(
jT j +

jT ∗
j

)
= ∇q̇j

jvj

(
jF j +

jF∗
j

)
+∇q̇j

jωj(
jT j +

jT ∗
j +

jpCoMj
×
(
jF j +

jF∗
j

))
+∇q̇j

jvj
jRj+1

(
j+1F j+1 +

j+1F ∗
j+1

)
+∇q̇j

jωj
jRj+1

(
j+1T j+1 +

j+1T ∗
j+1

)
+∇q̇j

jωj
jtj+1 × jRj+1

(
j+1F j+1 +

j+1F ∗
j+1

)
.

By direct inspection, one can recognize that the first two
terms of the above equation correspond to the first two in
the expanded right-hand side of (39). On the other hand, the
remaining three elements have the same form of the right-hand

side of (61) or (62), which can be exploited to obtain

∇q̇j

jvj

(
jF j +

jF ∗
j

)
+∇q̇j

jωj

(
jT j +

jT ∗
j

)
= ∇q̇j

jvj

(
jF j +

jF∗
j

)
+∇q̇j

jωj

(
jT j +

jT ∗
j +

jpCoMj
×
(
jF j +

jF∗
j

))
+∇q̇j

j+1vj+1

(
j+1F j+1 +

j+1F ∗
j+1

)
+∇q̇j

j+1ωj+1

(
j+1T j+1 +

j+1T ∗
j+1

)
.

(64)

The last two terms of (64) have again the same form of (63)
but with increased index. The result follows by repeating the
last two steps until the N -th term appears.
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